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Relations between matrices representing non-relativistic and relativistic N-electron
Hamiltonians in N-electron model spaces are analyzed. The model spaces are defined as the
antisymmetric parts of products of the N-th Kronecker power of either a two-dimensional
(the non-relativistic case) or four-dimensional (the relativistic case) spinor space and of an
orbital (or configurational) space. The explicit relation between the matrices corresponding
to the relativistic and non-relativistic cases is derived and its practical implications are
briefly discussed.
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The structure of an antisymmetric model space, appropriate for representa-
tion of an N-electron Hamiltonian, depends on two main factors: the spe-
cific symmetry imposed upon the model space and the structure of the spin
space. The ways the first of these factors may be implemented are the sub-
ject of many analyses and have been described in numerous works (e.g.
refs1–5). In brief, they may be reduced to a requirement that the model
space is chosen to be an eigenspace of the operators which commute with
the Hamiltonian and/or a carrier space of a representation of the invariance
group of the Hamiltonian. The structure of the spin space depends on the
spinor properties of the pertinent one-electron wavefunctions: two-
component in the non-relativistic Pauli model and four-component in the
relativistic Dirac theory. Properly taking into account the second factor is
inherent in all algorithms of construction of the Hamiltonian matrix. Con-
sequently, there exist two sets of methods and of the corresponding algo-
rithms: those based on using the two-component Pauli spinors2 and those
based on the four-component Dirac spinors (also referred to as bi-spinors)6.
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In a vast majority of implementations the formulations using two-
component spinors are exploited. During the last decade several works were
concerned with construction of methods in which the four-component-
spinor space is expressed in terms of products of the two-component-spinor
spaces and, consequently, the methods of construction of the Hamiltonian
matrix developed for the two-component spinors, after some modifications,
might be applied7–9. Also the present work belongs to this category. How-
ever, we use a new separation scheme of the Dirac bi-spinors. All previous
authors, except for a brief note by Moshinsky and Sharma10, expressed the
Dirac bi-spinor as a direct sum of two two-component parts: the “large”
(composed of two large components) and the “small” (composed of two
small components) parts. In the present paper the bi-spinors are split in an
entirely different way: the Dirac bi-spinor is expressed as a direct product of
two two-component quantities, one of which is the same as the Pauli
spinor. Though the present approach assigns certain hierarchy to the
two-component spaces, it allows us for a more symmetric way of approach-
ing the problem of construction of the Hamiltonian matrix in a basis of rel-
ativistic wavefunctions. In particular, we derive some explicit relations
between the Hamiltonian matrix constructed in a space composed of prod-
ucts of bi-spinors and matrices constructed in spaces based on products of
the Pauli spinors. As a practical consequence, a matrix representing the rel-
ativistic Dirac Hamiltonian may be constructed using slightly modified al-
gorithms designed for construction of the Hamiltonian matrices in the
non-relativistic models.

Atomic units are used in this paper. However, if the clarity of presenta-
tion is increased by explicit using of some physical constants we set � and
� for the electron mass and charge, respectively. The velocity of light is de-
noted � ≈ 137.

THEORY

Basic Definitions and Concepts

Let { ( )}ϕ j jr1 1=
∞ be a complete set of linearly-independent scalar functions.

Since we are concerned with a description of discrete states, we may as-
sume, without any loss of generality, that the basis is orthonormal. Let R1

be the one-particle Hilbert space spanned by this basis. A non-relativistic
wavefunction (spin-orbital) describing a stationary state of a single electron
may be expressed as
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are the eigenvectors of the spin projection operator and ϕa, ϕb ∈ R1 are the
orbitals associated with the respective spin projections (frequently, in the
so called restricted methods, ϕa = ϕb is assumed). In the coordinate represen-
tation, r1 is the position vector and x1 stands collectively for the position
and spin coordinates of the electron. Consequently, the corresponding
one-electron model space, referred to hereafter as the Pauli space P, may be
expressed as

P ≡ H V Rnr
1 1 1= ⊗σ , (3)

where Vσ
1 is a two-dimensional one-electron spin space spanned by {ea,eb}.

In the relativistic (Dirac) theory, a one-electron wavefunction is repre-
sented by a bi-spinor and may be expressed as
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ϕ ϕas bs( ) ( )r r , (4)

where the argument 1 in ψ(1) refers to the spinor and position coordinates
of the electron. Alternatively, Eq. (4) may be expressed as

ψ(1) = [ ]
a,bl,s

~ ( )e e
c

c
c ⊗

==
∑∑ σ
σ

σϕ r1 , (5)

where ϕσc(r1) ∈ R1 and

~ , ~e el s= 




= 




1

0

0

1
(6)

are orthonormal basis vectors in a two-dimensional space Vc
1 referred to as

the space of large and small components of the wavefunction11. It is obvious
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that spaces Vc
1 and Vσ

1 are isomorphic. The corresponding one-electron
model space, referred to hereafter as the Dirac space D, may be expressed as

D H = V V R V H V R≡ ⊗ ⊗ = ⊗ = ⊗rel
1

nr
1

c c
1 1 1 1 1 1

σ , (7)

where

V 1 = V Vc
1 1⊗ σ (8)

is the four-dimensional, one-electron, bi-spinor space.
The bi-spinor space V 1 may also be represented as

V 1 = V Vσ
1 1⊗ c . (9)

This representation, canonically equivalent to the one given by Eq. (8), is of
particular interest and importance though, surprisingly, has not been ex-
ploited in practical calculations. Due to Eq. (9), the Dirac space may be de-
composed in a way analogous to the decomposition (3) of the Pauli space:

H = V Qrel
1

σ
1 1⊗ , (10)

where

Q V R1 1 1= ⊗c (11)

corresponds to R 1 of the non-relativistic theory.
The N-electron space is defined as the antisymmetric part of the N-fold

Kronecker product of the one-electron space. Thus, in the non-relativistic
case

H Hnr nr
AN N= ⊗[ ]1 (12)

and in the relativistic case

H Hrel rel
AN N= ⊗[ ]1 , (13)

where the superscript A stands for the antisymmetry. The N-electron spaces,
composed of the orbital and of the spinor spaces combined in a way de-
scribed by Eqs (12) and (13) are equivalent to the N-electron subspaces of
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the Fock space1. In the non-relativistic case, there are two canonically
equivalent ways of representing the N-electron subspace of the Fock space.
In the first

H V Rnr
AN N= ⊗ ⊗[( ) ]σ

1 1 (14)

and in the second

H V Rnr
AN N N= ⊗⊗ ⊗[( ) ( ) ]σ

1 1 . (15)

From this equivalence one may derive the so called duality of Weyl2 and, in
consequence, two approaches to the non-relativistic theory of many-
electron systems known, respectively, as the unitary group approach3 and the
symmetric group approach (SGA)4. In the relativistic case

H V Hrel nr
AN

c
N= ⊗ ⊗[( ) ]1 1 . (16)

This representation of H rel
N , corresponding to the unitary group approach of

the non-relativistic theory, is commonly used in relativistic calculations in
which the wavefunctions are expressed as linear combinations of Slater de-
terminants built from the one-electron Dirac bi-spinors6. A canonically
equivalent representation, analogous to Eq. (15) is

H V Hrel nr
AN

c
N N= ⊗⊗ ⊗[( ) ( ) ]1 1 . (17)

Two other equivalent representations may be written as

H V V R V Rrel
A AN

c
N N N N N= ⊗ ⊗ = ⊗⊗ ⊗ ⊗ ⊗ ⊗[( ) ( ) ( ) ] [( ) ( ) ]1 1 1 1 1

σ . (18)

Finally, Eq. (10) implies that

H V Qrel
AN N N= ⊗⊗ ⊗[( ) ( ) ]σ

1 1 . (19)

The last representation may be used as a starting point for construction of a
relativistic analogue to the symmetric group approach to spin-dependent
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configuration interaction method12. Its consequences will be discussed later
in this work.

In practical calculations, the complete (and infinite) Hilbert space R 1 is
replaced by a finite-dimensional orbital space. In consequence, H rel

N and H nr
N

become finite-dimensional model spaces often referred to as the full configu-
ration interaction spaces1. In order to better compensate the truncation of
the basis set of the one-particle functions, one may introduce an N-particle
orbital model space R N which is not expressible as the N-th Kronecker
power of a finite-dimensional one-particle space. The best known example
is the space which defines the method of superposition of correlated configura-
tions also known as the Hylleraas configuration interaction method (see, e.g.,
ref.13 and references therein). In such a case, in Eqs (15) and (18) we substi-
tute a general orbital space R N for ( )R 1 ⊗ N .

In this paper we study relations between matrix representations of two
kinds of N-electron Hamiltonians: $H P (x1,x2,...,xN) (a Pauli-type, non-
relativistic and spin-dependent) and $H D (1,2,...,N) (a Dirac-type, relativis-
tic). The Hamiltonians are defined on H nr

N and H rel
N , respectively. Our aim is

to compare the matrix representations of these Hamiltonians in the model
spaces described, respectively, by Eqs (15) and (19).

One Electron

The one-electron Dirac Hamiltonian is defined on the Dirac space H rel
1 and

may be expressed as

$ ( ) $ $ ( ) $ $ ( ) $ $ ( )H I H H Hc1
D

A
D

B
D

C
D1 = ⊗ + ⊗ + ⊗x x x1 1 1β α , (20)

where

$ , $ , $I c =






=

−






=






1 0

0 1

1 0

0 1

0 1

1 0
β α (21)

are defined on the large and small component space Vc
1 . The remaining

operators, i.e.,

$ $ $( ) , $ $ $H I H I IA
D

B
D

r= ⊗ = ⊗σ συ r1
2�� (22)

and

$ $ $ ( )†H m m
m

C
D = ⊗

=−
∑� σ π r1

1

1

, (23)
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where $I σ and $σm represent, respectively, the unit matrix and the Pauli spin
matrices, $I r is the unit operator in R 1 , $υ is an external scalar potential, ��2

is the rest energy, and $πm is the k-th component of the generalized momen-
tum, are defined on the Pauli space. We assume that the Pauli matrices are
in the standard form, i.e.

$ $ , $ ( $ $ )σ σ σ σ σ0 1

1 0

0 1
1

2

0 2

0 0
= =

−






= + =









+z x yi (24)

and $ $ †σ σ− +=1 1 . Accordingly, the components of the generalized momentum
are defined as

$ $ $ , $ [( $ $ ) ( $ $ )] , $π π π0 1 1

1

2
= − = + − + =+ −p A p p A Az z x y x y� �i i $ †π+1 , (25)

where $p and $A are, respectively, the momentum and the vector potential
operators. Let us note that operators $I r , $υ and $π act on R 1 while $I σ and $σm

are defined on the spin space Vσ
1 . Equation (20) may be rewritten as

$ ( )
$ ( ) $ ( )
$ ( ) $ ( )

H h h

h h
1
D ll

D
ls
D

sl
D

ss
D

1 =










x x

x x
1 1

1 1

, (26)

where $ $ $h H Hll
D

A
D

B
D= + , $ $ $h H Hss

D
A
D

B
D= − and $ ( $ ) $†h h Hls

D
sl
D

C
D= = . Hence we may

write

H H Hrel rel, l rel,s
1 1 1= ⊗ , (27)

and, since $hcc ′
D act on the Pauli space, H Hrel, nrc ce1 1= ⊗~ , c ∈ {l,s}.

If the Dirac space is decomposed according to Eq. (10), then the Dirac
Hamiltonian (20) may be expressed in the form

$ ( ) $ $ (~ ) $ $ (~ )†H I H Bm m
m

1
D D D1 = ⊗ + ⊗

=−
∑σ σ0 1 1

1

1

x x , (28)

where ~x1 stands collectively for the position and large-small-component-
space coordinates of the electron,
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$ (~ ) $ $( ) $ $ $

$
H I Ic0

D
rx r1 1

2
2

2

0

0
= ⊗ + ⊗ =

−








υ β υ +

υ
��

��

��  (29)

and

$ (~ ) $ $
$

$
Bm m

m

m

D x1

0

0
= ⊗ =









� �α π

π
π

. (30)

The corresponding eigenvalue equation may be written as

$ ( ) $ ( ) $ ( )
$ ( ) $ ( ) $

H B E B

B H B
0
D

0
D

–1
D

+1
D

0
D

x x x

x x
1 1 1

1 1
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+ −
− 0

D
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x1

1

1

0
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 =E

φ
φ

, (31)

where E = ε + ��2 is the energy and

φ
ϕ
ϕ

φ
ϕ
ϕ

a
al
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b

bl
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( )

( )

( )
, ( )

( )

( )
x

r

r
x

r

r1
1

1
1

1

1

=








 =









 . (32)

In this case, instead of Eq. (27) we have

H H H Q Qrel rel,a rel,b a b
1 1 1 1 1= ⊕ = ⊗ ⊕ ⊗e e . (33)

The non-relativistic limit of Eq. (31) may easily be obtained by the substi-
tution14

$υ – (��2 + E) $I r = $υ – (2��2 + ε) $I r → –2��2 $I r . (34)

Under this substitution, the small components may be expressed in terms
of the large ones as

ϕ π ϕ π ϕ ϕ π ϕ π ϕas al bl bs al bl= + = −− +
1

2
2

1
2

20 1 1 0
�� ��

( $ $ ) , ( $ $ ) , (35)

and, consequently, eliminated from Eq. (31). The resulting non-relativistic,
two-component, equation reads
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$ ( ) $ ( ) $ ( )
$ ( ) $ ( ) $

H B B

B H B
0
P

0
P

–1
P

+1
P

0
P

r r r

r r
1 1 1

1 1

2

2

+ −
−

ε
0
P

al

bl( )

( )

( )r

r

r1

1

1

0
−


















 =ε

ϕ
ϕ

, (36)

where

$ $ $H 0
2P = υ + 1

2�
� , (37)

and

$ [ $ , $ ] , $ [ $ , $ ] , $ [B B B0 1 1 1 1 0 1
P P P= = =+ − + − −

1
2

π π 1
2

π π 1
2� � �

$ , $ ]π π0 1+ ,

or, in a more compact form,

$ $ $B P = ×1
2�

� � . (38)

Except for definitions of specific symbols, the structure of this equation is
the same as that of its relativistic counterpart (31). In particular, the
non-relativistic Hamiltonian associated with Eq. (36) may be written as

$ ( ) $ $ ( ) $ $ ( )†H I H Bm m
m

1
P

0
P Px r r1 1 1

1

1

= ⊗ + ⊗
=−
∑σ σ , (39)

analogous to the Dirac Hamiltonian defined in Eq. (28). Consequently, in
analogy to Eq. (33), the space H nr

1 over which $H P is defined may be, alterna-
tively to Eq. (3), decomposed as

H H H R Rnr nr,a nr,b a b
1 1 1 1 1= ⊕ = ⊗ ⊕ ⊗e e . (40)

Let us assume that the basis in R 1 is finite, i.e. the orbital space is selected
as a finite-dimensional subspace of the complete Hilbert space. In such a
case the subspaces of R 1 associated with each of the components of the
wavefunction may be different. Assume that in the finite basis

H R Rnr a a b b
1 1 1= ⊗ ⊕ ⊗e e , (41)

where R a
1 and R b

1 are spanned, respectively, by
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{ } { ( )} { } { ( )}� �a a b ba band= == =ϕ ϕj j
d

j j
dr r1 1 1 1 . (42)

The corresponding basis in Q1 is given by

{ } { } {~ } {~ }� a a
l

a
s

aa a a≡ = ⊗ ∪ ⊗= = =φ ϕ ϕj j
d

i i
d

i i
de e1

2
1 1 (43)

and

{ } { } {~ } {~ }� b b
l

b
s

bb b b≡ = ⊗ ∪ ⊗= = =φ ϕ ϕj j
d

i i
d

i i
de e1

2
1 1 , (44)

where, for simplicity, we assumed that the large- and small-component
bases are the same. According to Eqs (5), (10), (43) and (44), the resulting
Dirac space is spanned by d = 2(da + db) bi-spinors

{ } { } { }� � �= ⊗ ∪ ⊗e ea
a

b
b . (45)

The Hamiltonian $H R , where R = D, P, is represented by the matrix

H f f f f
h h

h h
R a b

1
R a b aa

R
ab
R

ba
R

bb
R

= =






[{ },{ }| $ |{ },{ }]H


 , (46)

where f = �/� if R = D/P,

h f f h f faa
R a

0
R

0
R a

bb
R b

0
R

0
R= + = −[{ }| $ $ |{ }] , [{ }| $ $ |{H B H B b }] ,

h h f fab
P

ba
P a

+1
R b= =( ) [{ }| $ |{ }]† B , (47)

and hσσ σ σ′ ′ ∈R a,b( , { }) are blocks of elements

( R Rhσσ
σ

σσ
σ

′ ′ ′ ′
′=) | $ |jj j jf h f� � (48)

of dimensions dσ × dσ′ in the non-relativistic (Pauli) model (cf. Eq. (42)) and
2dσ × 2dσ′ in the relativistic (Dirac) model (cf. Eqs (43) and (44)). Another
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important difference between the Dirac and the Pauli models is the struc-
ture of the Hamiltonian. In the Pauli model, $H 0

P and $Bm
P are one-component

quantities while in the Dirac model $H 0
D and $Bm

D are 2 × 2 matrices.

N-Electrons

By augmenting the one-electron Hamiltonians to the N-electron space, one
obtains their simplest N-electron generalizations in which interactions be-
tween electrons are neglected. If the interaction in a relativistic system
(augmented Eq. (28)) or in a non-relativistic system (augmented Eq. (39)) is
described by the scalar Coulomb potential $ ( )H rij2 = �2/rij, where rij is the
interelectron distance, then the resulting N-electron Hamiltonians are
known, respectively, as Dirac–Coulomb and Pauli–Coulomb Hamiltonians.
If the interaction potentials include the Breit terms, then the resulting
Hamiltonians are referred to as Dirac–Breit and Pauli–Breit, respectively. In
this paper we shall restrict our discussion to Dirac–Coulomb and Pauli–
Coulomb Hamiltonians. A generalization for the cases of Dirac–Breit and
Pauli–Breit is conceptually straightforward though technically rather cum-
bersome. In order to simplify the discussion whenever possible, we shall
use the symbol $H to denote both Dirac–Coulomb and Pauli–Coulomb
Hamiltonians.

The N-electron Hamiltonian may be expressed as

$ ( ) $ $ ( ) $ $( ) ( )H I H I I GN
i

i

N

i
N i N� = ⊗ ⊗ +⊗ −

=

⊗ − ⊗∑ 1

1
1 ρ , (49)

where

G H rij
i j

N

=
>
∑ $ ( )2

is a scalar function describing interactions between electrons, $I is the iden-
tity operator defined on the space of the Hamiltonian, ρi is the appropriate
variable describing the electron, and � stands collectively for ρ1, ρ2, ..., ρN.
The Hamiltonian is symmetric in electron coordinates, i.e. it commutes with
the permutation operators $P of the electron coordinates. Since $H1 explicitly
depends on the Pauli spin matrices, the Hamiltonian does not commute
with the total spin operators. Nevertheless, it proves to be convenient to
construct the matrix representing the Hamiltonian in a model space H N

with ( )Vσ
1 ⊗ N decomposed onto eigenspaces VSM

N of the total spin operators
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$S 2 and $Sz , i.e. onto carrier spaces for the irreducible representations of the
symmetric group SN (refs12,15,16). Then, we express the N-electron spin space
as

( )V Vσ
1 ⊗

=−
= ⊕ ⊕N

S M S

S

SM
N , (50)

where S and N label nonequivalent irreducible representations, and M is the
counting index for labeling irreducible representations which appear (2S +
1) times in ( )Vσ

1 ⊗ N . The approach in which the spin space is separated from
the rest of the model space and decomposed according to Eq. (50) is specific
for SGA and has been used to construct matrices representing Pauli–
Coulomb Hamiltonians in N-electron model spaces2,15,17. In this note we
generalize this approach for the case of the Dirac–Coulomb Hamiltonian.

The N-electron basis in ( )Vσ
1 ⊗ N may be taken as the set of 2N different

products of the one-electron spin functions (2)

Θ Θk
M

k
M

N
j

N

j j e e( ) ( , ,... , ) , ,� ≡ = =
=
⊗σ σ σ σ σ1 2

1
a b , (51)

where M = (Na – Nb)/2 and Na and Nb are equal, respectively, to the numbers
of the one-electron spin functions ea and eb in the product (51). Then, Θk

M

are eigenfunctions of $Sz to the eigenvalue M. As one can easily see,

$ ( ) ( ) ( )P Z Pk
M

ik i
M

i

g

Θ Θ� �=
=
∑

1

, (52)

where

g g M N
N

M N
≡ =

+






( , )
2

is the dimension of the subspace of ( )Vσ
1 ⊗ N corresponding to the given M.

The set of N! matrices Z(P) forms a (reducible) representation of SN. Matrices
Z(P) are easy to construct and have very simple structure: in each row and
in each column one element is equal to 1 and the remaining ones are equal
to 0. By taking an appropriate unitary transformation of the products Θk,
one may construct a set of eigenfunctions of the total spin operators $S 2 and
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$Sz , i.e. the bases in V VSM
N N∈ ⊗( )σ

1 (see ref.16 for details). The resulting func-
tions, Θk

SM , span carrier spaces for irreducible representations of SN, i.e.

$ ( ) ( ) ( )P V Pk
SM

S
N

jk j
SM

j

f

Θ Θ� �=
=
∑

1

, (53)

where VS
N are the matrices of these representations and

f f S N
S

N

N

N S
≡ = +

+
+
−







( , )
2 1

1

1

2
(54)

is their dimension. The representations generated by Θk
SM correspond to

two-row Young shapes with x = (N/2) + S boxes in the first row and y =
(N/2) – S boxes in the second row16.

In a similar way one may construct a basis in ( )Vc
N1 ⊗ . Then, the primitive

N-electron basis may be defined as

Ξ Ξk k N
j

N

j jc c c c c e e� �( ) ( , ,... , ) , ~ , ~c ≡ = =
=
⊗1 1

1
l s (55)

with, in analogy to Eq. (51), � = (Nl – Ns)/2, where Nl and Ns are, respec-
tively, the numbers of large and small components in the product. Let us
note that N = Nl + Ns and, consequently,

Nl = � +
N
2

. (56)

Therefore the value of � may be used as a measure of the significance of a
term containing a specific function Ξ k

� in a transition to the non-
relativistic limit. The basis (55) may also be adapted to SN resulting in N-
electron functions Ξ k

�� with � = –�, –� + 1, ..., � and k = 1, 2, ..., f(�,N)
(more details may be found in ref.18). The transformation properties of Ξ k

�

and of Ξ k
�� are the same as the ones of Θk

M (Eq. (52)) and of Θk
SM (Eq. (53)),

respectively.
The antisymmetric and spin-adapted basis in H nr

N is given by

Ψ Θk
SM

k
SM, A R, ( ) $ [ ( ) ( )]λ λ� �r r= ⊗ , (57)
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where Rλ(r) is a basis function in RN

$
!

( ) $A
N

P P
P

= ∑1
� (58)

is the antisymmetrization operator and �(P) = ±1 is the parity of $P. The
analogous basis in H rel

N may be defined as

~
( , , ) $ [ ( )

~
( , )],

,Ψ Θk n
SM

k
SM

nA Rλ λ
� �� �c r c r= ⊗ , (59)

where

~
( , ) ( ) ( )R Rn nλ λ

� �c r c r= ⊗Ξ (60)

and n = 1, 2, ..., g(�,N).
Now let us evaluate matrix elements of the spin-dependent non-

relativistic N-electron Hamiltonian

H κκ
λλ
′
′ ≡ 〈 〉′ ′

′ ′Ψ Ψk,
SM

N k
S MHλ λ| $ | ,

P . (61)

After using Eq. (53), the matrix element may be expressed as

H κκ
λλ
′
′ = �( ) | | $ $ | |P R PH Rk

SM
N k

S M

P

〈 〈 〉 〉′
′ ′

′∑ λ λΘ ΘP , (62)

where κ = {k,S,M}, κ′ = {k′,S′,M′}; the external bracket symbolizes integration
over the electron coordinates and the internal one – over spin variables.
Substituting the explicit form of the Hamiltonian (Eqs (39) and (49)) to Eq.
(62), we can split the general matrix element expression

H H i H i j
i

N

i j

N

κκ
λλ

κκ
λλ

κκ
λλ

′
′

′
′

=
′
′

>

= +∑ ∑1
1

2( ) ( , ) (63)

to the one-electron contributions

H i H i H im

m
1 10 11

1

1

( ) ( ) ( )κκ
λλ

κκ
λλ

κκ
λλ

′
′

′
′

′
′

=−

= + ∑ (64)
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and the two-electron contributions

H i j P V P X PS
N

kk
ij

P
SS MM2 2( , ) ( ) ( ) ( )κκ

λλ λλ δ δ′
′

′
′

′ ′= ∑� , (65)

where

X P P R H r Rij
ij2

1
2( ) ( $ )| $ ( )|λλ

λ λ
′ −

′= 〈 〉 . (66)

The one-electron contributions, according to Eq. (39), may be expressed as

H i P V P X PS
N

kk
i

P
SS MM10 1( ) ( ) ( ) ( )κκ

λλ λλ δ δ′
′

′
′

′ ′= ∑� (67)

H i P W P Y Pm
m
i

m
i

P
11 1( ) ( ) ( ) ( )κκ

λλ
κκ

λλ
′
′

′
′= ∑� , (68)

where

X P P R H Ri
i1

1
0( ) ( $ )| $ ( )|λλ

λ λ
′ −

′= 〈 〉P r (69)

Y P P R B Rm
i

m i1
1( ) ( $ )| $ ( ) |†λλ

λ λ
′ −

′= 〈 〉P r (70)

W P Pm
i

k
SM

m
i

k
S M( ) | $ $ |κκ σ′ ′
′ ′= 〈 〉Θ Θ (71)

and

$ $ $ $( ) ( )σ σm
i i

m
NI I= ⊗ ⊗⊗ − ⊗ −1 1 . (72)

Let us note that W Pm
i ( ) κκ ′ = 0 if either |S – S′| > 1 or | |M M− ′ > 1.

This approach is reduced to the CI method for spin-dependent
Hamiltonians if the basis in RN is constructed from products of one-electron
orbitals, i.e. if

RN = (R1) ⊗ N (73)
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(see refs12,15 for details). Integrals over the orbital space (Eqs (66), (69) and
(70)) are then reduced to simple one- (Eqs (69) and (70)) and two-electron
(Eq. (66)) integrals. If the one-electron basis is orthogonal, then most of the
contributions given by Eqs (66), (69) and (70) vanish. However, the formal-
ism presented is much more general. It is valid for an arbitrary square-
integrable basis functions in RN, including explicitly correlated ones. De-
tailed discussion of specific cases is highly technical, involves rather tedious
algebra and will be presented elsewhere.

It is most important that a very similar formalism applies also in the rela-
tivistic case. The relativistic counterpart of Eq. (62) may be obtained by
combining Eq. (59) with the Hamiltonians (28) and (49):

~
H µµ

λλ
′
′ = �( )

~
| | $ $ | |

~
P R PH Rn k

SM
k
S M

n
P

〈 〈 〉 〉′
′ ′

′ ′∑ λ λ
� �Θ Θ , (74)

where µ = {k,S,M,n,�}, µ′ = {k′,S′,M′,n′,�′}. Then the relativistic analogs to
Eqs (63)–(70), are obtained by the replacement of symbols H by

~
H, chang-

ing the subscripts κκ′ to µµ′ and by redefining X and Y integrals in the fol-
lowing way:

X P X P P R H r Rij ij
n ij2 2

1
2( )

~
( ) ( $ ~

)| $ ( )|
~λλ

νν
λλ

λ
′

′
′ −→ = 〈 �

′ ′
′ 〉n λ

� (75)

X P X P P R H Ri i
n i n1 1

1
0( )

~
( ) ( $ ~

)| $ ( )|
~λλ

νν
λλ

λ
′

′
′ −

′→ = 〈 � D x ′
′ 〉λ

� (76)

Y P Y P P R Bm
i

m
i

n m i1 1
1( )

~
( ) ( $ ~

)|
~

( ) |
~†λλ

νν
λλ

λ
′

′
′ −→ = 〈 � D x Rn ′ ′

′ 〉λ
� , (77)

where ν = {n,�}, ν′ = {n′,�′}. Thus, instead of Eqs (65), (67) and (68), we
have, respectively,

~
( , ) ( ) ( )

~
( )H i j P V P X PS

N
kk

ij

P
SS M2 2µµ

λλ
νν
λλ δ δ′

′
′ ′

′
′= ∑� ′M (78)

~
( ) ( ) ( )

~
( )H i P V P X PS

N
kk

i

P
SS MM10 1µµ

λλ
νν
λλ δ δ′

′
′ ′

′
′ ′= ∑� (79)
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~
( ) ( ) ( )

~
( )H i P W P Y Pm

m
i

m
i

P
11 1µµ

λλ
µµ νν

λλ
′
′

′ ′
′= ∑� . (80)

Let us note that for a given pair {λ,λ′ } in the non-relativistic case,
X Pij

2 ( ) λλ ′ , X Pi
1 ( ) λλ ′ and Y Pm

i
1 ( ) λλ ′ are single numbers while their relativistic

counterparts, respectively
~

( )X Pij
2 νν

λλ
′
′ ,

~
( )X Pi

1 νν
λλ
′
′ and

~
( )Y Pm

i
1 νν

λλ
′
′ , are 2N × 2N

arrays. In particular, from Eqs (60) and (75)–(77) one gets

~
( ) | $ | ( $ )| $ ( )|X P P P R H r Rij

n n ij2
1

2νν
λλ

λ′
′

′
′ −

′= 〈 〉 〈Ξ Ξ� �
λ 〉 (81)

~
( ) | $ | ( $ )| $( )|X P P P R Ri

n n i1
1

νν
λλ

λ λυ′
′

′
′ −

′= 〈 〉 〈 〉 +Ξ Ξ� � r

+ P P R Rn
i

n�� � �2 1〈 〉 〈 〉′
′ −

′Ξ Ξ| $ | ( $ )β λ λ (82)

~
( ) | $ | ( $ )| $ ( ) †Y P P P Rm

i
n

i
n m i1

1
νν
λλ

λα π′
′

′
′ −= 〈 〉 〈� � �Ξ Ξ r |R ′ 〉λ , (83)

where

ω ωi i N iI I= ⊗ ⊗⊗ − ⊗ −$ $( ) ( )1 (84)

with ω = α, β. Therefore, in Eqs (78)–(80) each matrix element of either VS
N or

Wm
i matrix has to be multiplied by the appropriate 2N × 2N matrix giving a

4N × 4N matrix as the result. The evaluation of matrices
~

( )Z nnΩ ′ = 〈 〉′
′Ξ Ω Ξn n

� �| $ | , where
$ $ , $Ω = P P iβ , $P iα is very simple. In all cases, in each row and in each column one ele-
ment is equal to ±1 and the remaining ones are 0. If Ω = $P, then

~
( ) ( )Z Z Pnn nnΩ ′ ′= ,

where Z(P) is defined in Eq. (52). The elements in
~

( $ )Z P iα are the same as in
~

( $)Z P except for two pairs of elements being transposed. Finally, the
non-zero elements in

~
( $ )Z P iβ are located in the same positions as in

~
( $)Z P ex-

cept that half of them is equal to –1 rather than 1. More details concerning
structure of

~
( $ )Z Ω may be found in ref.18
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CONCLUSIONS

The decomposition of the 4N-dimensional N-electron Dirac spinor space to
a product of two isomorphic 2N-dimensional spaces ( )Vσ

1 ⊗ N and ( )Vc
N⊗ leads

to an approach in which the problem of construction of a matrix represent-
ing $H N

D in an N-electron model space is reduced to a much better elaborated
problem of construction of a matrix representing spin-dependent operators
in the non-relativistic theory based on Pauli two-component spinors. In
particular, computer programs designed for a treatment of spin-dependent
operators within a Pauli-type formalism may be, by only some minor modi-
fications, adapted to the corresponding Dirac–Coulomb approach.

The ideas presented in this paper may be a starting point for develop-
ment of a variety of approaches to relativistic theories of N-electron systems,
ranging from all kinds of CI methods to approaches in which explicitly cor-
related variational functions are used. Since the method allows for a clear
separation of the algorithms for a generation (either evaluation or reading
from a file) of the integrals over the coordinate space from the algorithms
which generate the coefficients with which these integrals appear in
Hamiltonian matrix elements (known as the coupling constants), it is partic-
ularly suitable for implementations within direct CI methods. In particular,
Eqs (75)–(83) allow for an assignment of blocks of the coupling constants to
specific integrals over the coordinate space.

One of the most important and difficult aspects of CI is designing criteria
for truncation of the expansions. The problem is particularly severe in the
case of relativistic approaches. When the basis in ( )Vσ

1 ⊗ N is spin-adapted,
then a criterion involving spin multiplicity may be very useful. In the low-
est approximation, only these parts of the coupling constant matrices may
be included that correspond to a given spin S. Next, the parts of the matri-
ces corresponding to S and to S ± 1 may be included. In higher approxima-
tions, consecutive blocks of the coupling constant matrices may be added.
Similarly, depending upon the quantities of interest, parts of the coupling
constant matrices corresponding to specific values of M may be included. In
general, the use of the spin-adapted basis even in the cases in which spin is
not a good quantum number gives a deeper insight into the structure of the
wavefunction and allows for easier selection of the most important compo-
nents of the CI wave function. At the same time, the spin adaptation does
not bring any substantial complexity to the algorithm.

The most “exotic”, since it has no non-relativistic counterpart, is the
space of large and small components, ( )Vc

N1 ⊗ . Formally, it is isomorphic to
the spin space ( )Vσ

1 ⊗ N . However its physical meaning is entirely different.
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Its subspace corresponding to a specific � contains wavefunctions with a
given ratio of large/small components in one-electron spinors. The authors
are not aware of any physical meaning of SN-adapted subspaces of ( )Vc

N1 ⊗ .
Therefore, in this paper, we do not perform any SN adaptation of this space
(though such an adaptation is not associated with any formal difficulty).
The N-electron space of large and small components may be truncated at a
certain value of � (in particular, only the subspaces corresponding to � =
N/2, N/2 – 1 are involved in constructing the non-relativistic limit). One
has to remember that this truncation is not trivial: also the Hamiltonian
has to be changed accordingly.

This work has been supported by the Polish State Committee for Scientific Research (KBN), project
No. 5 P03B 119 21.
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